Skip to main content

Best Practices for Using msgspec in Python for High-Performance Serialization

· 3 min read
Serhii Hrekov
software engineer, creator, artist, programmer, projects founder

msgspec is a high-performance serialization library designed for modern Python applications. It combines type-safe data modeling, blazing-fast parsing, and flexible support for multiple serialization formats, including MessagePack, JSON, and TOML.

This article outlines the best practices for integrating msgspec into your codebase. It provides a practical, performance-oriented guide to writing cleaner, safer, and faster Python services.


Why Choose msgspec

  • Performance: up to 10x faster than Pydantic for validation and parsing.
  • Type-safety using standard Python typing.
  • Multiple serialization formats out-of-the-box (e.g., JSON, MessagePack).
  • Lightweight and dependency-free.

Installation

pip install msgspec

Defining Data Models

Use msgspec.Struct to define typed models.

import msgspec

class User(msgspec.Struct):
id: int
username: str
email: str
is_active: bool = True

Best practice: Always use primitive types where possible (e.g., int, str, bool) for maximum performance.

Avoid dynamic attributes

Keep models strict by not allowing dynamic fields. msgspec enforces this by default.

# This will raise a ValidationError
User(id=1, username="serhiix", email="me@example.com", extra_field="bad")

Validating and Parsing JSON

msgspec offers fast JSON decoding with automatic validation.

import msgspec

class Product(msgspec.Struct):
id: int
name: str
price: float

raw_json = b'{"id": 101, "name": "Laptop", "price": 1299.99}'
product = msgspec.json.decode(raw_json, type=Product)
print(product.name) # Laptop

Serialization

Convert your struct to JSON or MessagePack:

data = msgspec.json.encode(product)
decoded = msgspec.json.decode(data, type=Product)

For MessagePack:

data = msgspec.msgpack.encode(product)
decoded = msgspec.msgpack.decode(data, type=Product)

Use Defaults Where Needed

class Comment(msgspec.Struct):
body: str
likes: int

def __init__(self, body: str, likes: int = 0):
self.body = body
self.likes = likes

Dealing with Lists and Nested Models

You can easily validate nested lists of structs.

class OrderItem(msgspec.Struct):
name: str
quantity: int

class Order(msgspec.Struct):
items: list[OrderItem]
total: float

json_data = b'''
{
"items": [{"name": "Apple", "quantity": 4}, {"name": "Banana", "quantity": 2}],
"total": 5.50
}
'''

order = msgspec.json.decode(json_data, type=Order)
print(order.items[0].name) # Apple

Handling Union Types

Support for tagged unions can simplify deserialization.

class Dog(msgspec.Struct, tag="type"):
type: str = "dog"
bark_volume: int

class Cat(msgspec.Struct, tag="type"):
type: str = "cat"
meow_pitch: float

Pet = Dog | Cat

json_input = b'{"type": "dog", "bark_volume": 10}'
pet = msgspec.json.decode(json_input, type=Pet)

Error Handling

Use msgspec.ValidationError to catch decoding/validation errors.

try:
data = msgspec.json.decode(b'{"id": "not-an-int"}', type=Product)
except msgspec.ValidationError as e:
print("Validation failed:", e)

Prefer Structs over Dicts

Avoid this:

data = msgspec.json.decode(json_bytes)

Prefer this:

data = msgspec.json.decode(json_bytes, type=User)

Use StructArray for Typed Lists (Optional)

users = [User(id=i, name=f"User {i}", email="u@example.com") for i in range(1000)]
encoded = msgspec.json.encode(users)

Tips for Performance

  • Prefer msgspec.Struct over dictionaries for structured data.
  • Reuse schemas as much as possible to reduce runtime overhead.
  • Use msgspec.msgpack for binary serialization if performance is critical.
  • Avoid deeply nested union types if performance matters.

When to Use msgspec

Use msgspec if your application:

  • Needs maximum speed and minimal latency (e.g., microservices, APIs).
  • Requires tight control over data validation.
  • Can benefit from modern Python typing without runtime overhead.

Conclusion

msgspec is a powerful alternative to traditional serialization tools in Python. It brings together the best parts of modern type-checking and high-performance computing in one small package.

Following the practices above will help ensure you're writing maintainable, fast, and type-safe Python code for your backend systems.

Further Reading